

Q.Dot™ stack materials for SWIR photodetectors & image sensors

**Application Notes** 

SWIR (short-wave infrared) sensing is becoming increasingly important in various applications such as:



However, current SWIR sensors that use absorbers like epitaxially grown InGaAs and HgCdTe (MCT) compound semiconductors are expensive to produce, and have limited camera resolution. Quantum Solutions offers a range of materials that can be used for fabricating a Q.Dot™ photodiode stack for sensing applications, including Q.Dot™ quantum dot absorbers, Q.Dot™ ETL, and HTL materials.





#### **Wide Range**

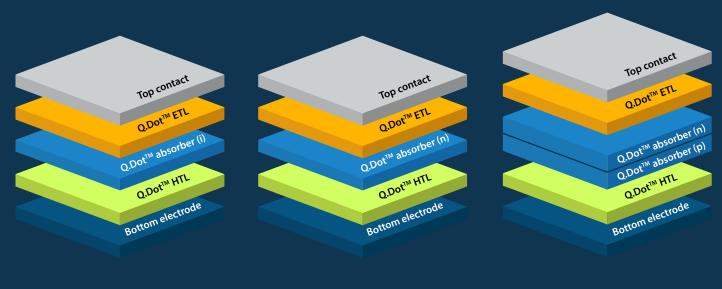
Q.Dot™ quantum dot absorber with broad tunable absorption in SWIR range from 700 to 2500 nm and superior photoelectrical properties with high devices EQE and detectivity, low dark current



### **Full Stack**

Carefully designed Q.Dot™ ETL (electron transport layer) and Q.Dot™ ETL (hole transport layer) semiconducting materials to be used in combination with Q.Dot™ quantum dots with various energy levels choices




### Solutionprocessable

Easy integration on substrates (glass, silicon, or CMOS wafers) by spin-coating or other printing processes, guaranteeing affordability and manufacturability.

# DEVICE ARCHITECTURE EXAMPLES

The Q.Dot™ stack architecture can vary in the implementation and Q.Dot™ layer types, sequence, thicknessaes, and spin-coating conditions, depending on the required specifications of the photodiode performance, such as sensitivity range, EQE, dark current, response time, reliability, etc.

## For example, there are several options for the sequence implementation of Q.Dot™ layers.



A

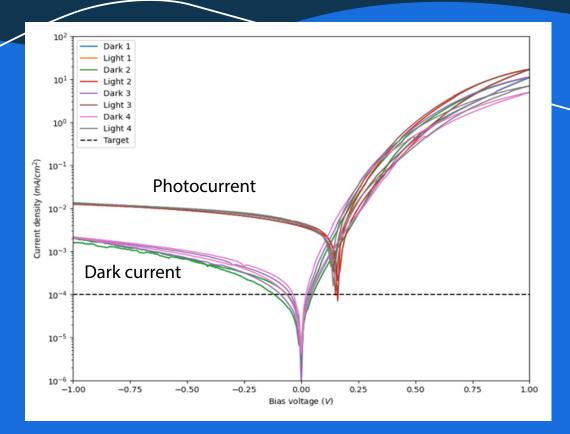
Type (A) represents the typical photodiode stack with the bottom Q.Dot™ HTL, followed by absorber Q.Dot™ quantum dots (i-type), Q.Dot™ ETL, and the top electrode.

B

Type (B) represents the photodiode structure where the absorber is Q.Dot™ quantum dots (n-type).

C

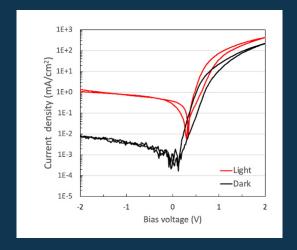
Type (C) demonstrates an example where the Q.Dot™ PbS layer includes two types: n and p types within the same stack.


Further details can be found in the following articles: [1], [2], [3], [4], [5].

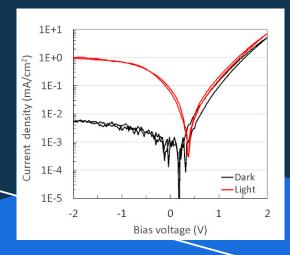
### **CASE STUDIES**

Q.Dot<sup>™</sup> InAs quantum dots, capped with fatty acids and featuring an absorption wavelength of 1200 nm (Q.Dot<sup>™</sup> InAs-1200-abs), were used as the absorber layer in the SWIR photodiode device employing the type (A) quantum dot stack architecture (see page 3). The Q.Dot<sup>™</sup> InAs-1200-abs layer was post-processed using a solution-phase ligand exchange technique to produce an n-type ink absorber layer [6]. Q.Dot<sup>™</sup> ETL-ZnO was used as the electron transport layer, and Q.Dot<sup>™</sup> HTL-PbS was used as the hole transport layer.

Depending on the thicknesses of the ETL and HTL layers, the EQE of the device can vary by up to 35–50% at 1200 nm. The dark current can be minimized to a value as low as 300 nA/cm<sup>2</sup> at a 0.5 V bias. Examples of I–V curves for some variants are presented in Figure 1.


1

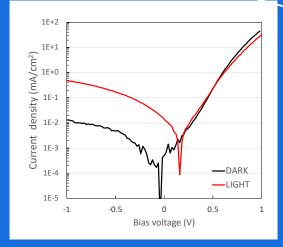



### **CASE STUDIES**

Q.Dot™ PbS quantum dots, oleic acid capped, with an absorption wavelength of 1420 nm (Q.Dot™ PbS-1420-abs) were used as the absorber layer in the SWIR photodiode device with the type (A) Q.Dot™ stack architecture. The Q.Dot™ PbS-1420-abs layer was deposited using spin-coating and solid ligand exchange techniques to create i-type absrober layer [7]. Depending on the choices and thicknesses of the Q.Dot™ ETL and HTL, the EQE can be varied by up to 40-60% at 1450 nm. The dark current can be minimized to the range between 100 to 1,000 nA/ cm<sup>2</sup> at 0.5V bias. Examples of I-V curves for some variants are presented in the Figures 2 and 3. The variant (1) utilizes Q.Dot™ ETL-ZnO and Q.Dot™ HTL-PbS, while the variant (2) exploits Q.Dot™ ETL-ZnO and Q.Dot™ HTL-POL.

2




3



Q.Dot™ PbS n-type ink, with an absorption wavelength of 1420 nm (Q.Dot™ PbS-1420-abs n-ink), was used as the absorber layer in the SWIR photodiode device with a type (B) stack architecture that included Q.Dot™ ETL-ZnO and Q.Dot™ HTL-PbS. The Q.Dot™ PbS-1420-abs layer was deposited by a simple spin-coating process, involving 3 deposition steps to create a thick absorber layer of 300 nm. This deposition process did not require any solid ligand exchange. The EQE reached 50-60% at 1450 nm, with a dark current of 13 µA/cm² at a 0.5V bias (Figure 4). The dark current can be reduced to values below 1 µA/cm² by using the type (C) architecture, which additionally incorporates a p-type quantum

dot absorber.

4



### PRODUCTS PORTFOLIO



Q.Dot™ PbS Quantum Dots, oleic acid capped



Q.Dot™ InAs Quantum Dots, oleic acid capped



Q.Dot™ PbS Quantum Dots, n-type ink



Q.Dot™ ETL and HTL materials