

Perovskite Quantum Dots for X-Rays

Scintillators, which are capable of converting ionizing radiation into visible photons, are very important for such areas as: inspection, failure/cracks detection, security X-ray imaging, nuclear cameras, and computed tomography. QDot[™] Perovskite Quantum Dots can be used as an efficient X-ray scintillation material. It exhibits strong luminescence (tunable in the range of 450-685 nm) under X-rays that is readable by the conventional silicon imaging camera. It is also compatible with PMT detectors, silicon photodiodes or photomultipliers.

BENEFITS:

- High sensitivity (from 13 nGy/s)
- High light output (50 % of CsI:Tl)
- Short decay time (40 ns)
- High stopping power
- Solution processable
- Enable flexible X-ray detector

PERFORMANCE:

QDot™ Perovskite Quantum Dots		
Emission peak	410 – 685 nm	
FWHM	< 20-25 nm	
Decay time under 661 keV	< 50 ns	
Light output at 10kV (% of CsI:TI)	50 %	
Detection limit	13 nGy/s	

qdot.inc 🖂 info@qdot.inc

Products portfolio:

<u>QDot[™] Perovskite ABX3 Quantum Dots</u> QDot[™] SharpGreen Perovskite QDs

QDot[™] SharpGreen Perovskite QDs Film

DEVICE EXAMPLE:

QDot[™] Perovskite QDs are a novel superior X-ray scintillator material with an exceptional sensitivity. The fast response to X-ray photons is critical especially in medical radiography and also industrial inspection.

QDot[™] Perovskite QDs as an X-ray scintillator can convert X-ray photons to visible light which can be easily detected by commercial available photodetector (CCD camera). Solution process ability and good compatibility with photodetector make it appealing for commercial application.

+44 7389826941

Oot

Perovskite Quantum Dots for UV Sensors

Silicon photodiode is the most widely used commercial photodetector for a broad range of applications, from imaging to light sensors. Unfortunately, it has low responsivity and suffer in capturing UV light range (< 400 nm), due to the low penetration depth of high energy UV photons in the silicon-based materials. QDot[™] Perovskite Quantum Dots can be utilized as a color-converting layer to enhance the UV light sensitivity of Si-based photodectors.

BENEFITS:

- High photo-conversion of UV light into visible light (PLQY up to 100 %)
- High absorption coefficient of UV light
- Tunable emission 410-685 nm

PERFORMANCE:

QDot™ Perovskite Quantum Dots	
Emission	410-685 nm
PLQY at UV light excitation	Up to 100 %
FWHM	< 20-35 nm
UV light absorption range	100-400 nm
PL decay time (372 nm)	4.5 ns
Responsivity improvement in Si- PD with QDot™ Perovskite QDs	10 ² -10 ³

qdot.inc 🖂 info@qdot.inc

Products portfolio:

<u>QDot™ Perovskite ABX3 Quantum Dots</u> <u>QDot™ SharpGreen Perovskite QDs</u>

QDot™ SharpGreen Perovskite QDs Film

DEVICE EXAMPLE:

QDot[™] Perovskite QDs can convert UV light into lower energy green light where Si-based photodetectors have a high sensitivity. QDot[™] Perovskite QDs ABX3-510 can be used in the form of QDs in a polymer film or a spin coated layer on top of the Si-based photodetector.

By utilizing only very thin layer of QDot[™] Perovskite QDs on top of Si-based photodetector, the responsivity of the devices increases in response to UV light, without scarifying the response to the the visible light.

uantum

SOLUTIONS

+447389826941